Record statistics and persistence for a random walk with a drift
نویسندگان
چکیده
منابع مشابه
A Random Walk with Exponential Travel Times
Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...
متن کاملAn algorithm for tracking a random walk with unknown drift
In this paper we study the problem of tracking a random walk observed with noise when the variance of the walk increment is unknown. We describe a sequence of estimators of the random walk and we design an algorithm to choose the best estimator among all the sequence. We give also a bound for the mean square error of this estimator. Finally some simulations are presented and we compare our algo...
متن کاملQuantum persistence: a random-walk scenario.
In this paper we extend the concept of persistence, well defined for classical stochastic dynamics, to the context of quantum dynamics. We demonstrate the idea via quantum random walk and a successive measurement scheme, where persistence is defined as the time during which a given site remains unvisited by the walker. We also investigated the behavior of related quantities, e.g., the first-pas...
متن کاملThe overshoot of a random walk with negative drift
Let fSn; nX0g be a random walk starting from 0 and drifting to 1, and let tðxÞ be the first time when the random walk crosses a given level xX0. Some asymptotics for the tail probability of the overshoot StðxÞ x, associated with the event ðtðxÞo1Þ, are derived for the cases of heavy-tailed and light-tailed increments. In particular, the formulae obtained fulfill certain uniform requirements. r ...
متن کاملA random walk construction of Brownian motion with drift
Brownian motion with drift is constructed on the real line as the almost sure limit of a sequence of random walks. Central to the construction is an embedded varying environment branching process, which encodes the sample path behaviour of the limiting diiusion. We show how a single small time bound on the normed limit of the branching process leads to diierent small and large time bounds on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2012
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/45/35/355002